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[1] Spatial filtering is an effective way to improve the precision of coordinate time series for
regional GPS networks by reducing so-called commonmode errors, thereby providing better
resolution for detecting weak or transient deformation signals. The commonly used
approach to regional filteringassumes that thecommonmodeerror is spatiallyuniform,which
is a good approximation for networks of hundreds of kilometers extent, but breaks down as
the spatial extent increases. A more rigorous approach should remove the assumption of
spatially uniform distribution and let the data themselves reveal the spatial distribution of the
common mode error. The principal component analysis (PCA) and the Karhunen-Loeve
expansion (KLE) both decompose network time series into a set of temporally varyingmodes
and their spatial responses. Therefore they provide a mathematical framework to perform
spatiotemporal filtering. We apply the combination of PCA and KLE to daily station
coordinate time series of the Southern California Integrated GPS Network (SCIGN) for
the period 2000 to 2004. We demonstrate that spatially and temporally correlated
common mode errors are the dominant error source in daily GPS solutions. The spatial
characteristics of the common mode errors are close to uniform for all east, north, and
vertical components, which implies a very long wavelength source for the common
mode errors, compared to the spatial extent of the GPS network in southern California.
Furthermore, the common mode errors exhibit temporally nonrandom patterns.
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1. Introduction

[2] Continuous GPS (CGPS) networks consisting of
hundreds of global stations and thousands of regional
stations provide a unifying framework to monitor surface
deformation patterns from global to regional to local scales.
Studies using CGPS measurements have revealed deforma-
tion patterns over a range of spatial scales from global plate
motion [Larson et al., 1997; Sella et al., 2002; Prawirodirdjo
and Bock, 2004] and geocenter motion [Blewitt et al., 2001;
Dong et al., 2003] to regional crustal deformation at plate
boundaries [Shen et al., 1997; Murray et al., 1998; Calais,
1999; Miyazaki and Heki, 2001; Beavan et al., 2002;
Márquez-Azúa and Demets, 2003; Hammond and Thatcher,
2004] to local coseismic deformation [Bock et al., 1993;
Hudnut et al., 1996; Simons et al., 2002]. Quantification of
the deformation patterns are useful for investigating geophys-
ical processes with various temporal variations from postgla-
cial rebound [Johansson et al., 2002] to postseismic

deformation and slow earthquakes [Dragert et al., 2001;
Miller et al., 2002; Hudnut et al., 2002] to seasonal deforma-
tion [vanDam et al., 1994;Hatanaka et al., 2001;Dong et al.,
2002] to transient motions [Melbourne and Webb, 2002;
Melbourne et al., 2002; Larson et al., 2003; Bock et al.,
2004; Ohtani et al., 2004]. Accompanying the efforts of
scientists to extract more information from CGPS, various
filtering techniques have been developed to suppress or
eliminate various noise sources in the position time series.
In regional network analysis, the so-called common mode
error (CME) is one of the major spatially correlated error
sources in the CGPS solutions, which is mitigated
through a technique commonly referred to as regional
filtering.
[3] Regional spatial filtering of CGPS position time series

was first introduced by Wdowinski et al. [1997] to improve
the resolution of coseismic and postseismic displacements
for the 1992 Mw 7.6 Landers earthquake in southern
California. This approach removes a common mode bias
from each coordinate component, computed by ‘‘stacking’’
the position residuals of the stations and estimating and
removing the mean value. This procedure is equivalent to a
three-parameter Helmert transformation of the origin of the
network (i.e., a 3-D translation). The ‘‘filtered’’ time series
have a significantly lower root mean square error thereby
improving the resolution of the observing system for
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detecting weak and transient signals [Wdowinski et al.,
1997; Smith et al., 2004]. Error analysis of CGPS position
time series shows that regional filtering reduces the ampli-
tudes of both the white noise and flicker noise components
by a factor of 2–3 [Williams et al., 2004]. Several GPS data
analysis centers have adopted this or similar approaches to
regional filtering in their routine work and provide both
unfiltered and filtered time series for public use (e.g., http://
sopac.ucsd.edu/cgi-bin/refinedJavaTimeseries.cgi; http://
reason.scign.org; http://sideshow.jpl.nasa.gov/mbh/series.
html). The regional filtering technique has been widely
used as part of the study of various tectonics processes
[Wdowinski et al., 1997; Calais, 1999; Scherneck et al.,
2000; Parker, 2001;Miller et al., 2001a, 2001b;Miyazaki et
al., 2003; Márquez-Azúa and Demets, 2003; Wdowinski et
al., 2004; Smith et al., 2004].
[4] Although widely used, regional spatial filtering is

performed in a somewhat empirical fashion. There are
several interesting questions that should be further investi-
gated. For example, what is the physical source of the CME
source? What signals are contained in the common mode
bias? Should the spatial distribution of the CME be uniform
over the whole region? How can this methodology be
extended to larger regional networks? In this paper, we
show that common mode spatial filtering can be understood
in the context of spatiotemporal filtering by principal com-
ponent analysis (PCA) and the Karhunen-Loeve expansion
(KLE).Wewill demonstrate that the combination of PCA and
KLE provides a more solid numerical framework for address-
ing these basic questions, and improving the extraction of
signal and systematic error from GPS regional position time
series.

2. Regional Filtering Approach

[5] Daily position time series from the Southern California
Integrated GPS Network (SCIGN) are used in this paper,
specifically the Scripps Orbit and Permanent Array Center’s
(SOPAC) most recent operational time series concatenated
onto the reanalysis by Nikolaidis [2002] of global IGS and
SCIGNdata from January 1991 to January 2002. The SOPAC
analysis uses a distributed processing method described by
Zhang [1996]. A global analysis divides the IGS stations into
a number of interleaved as well as regionally clustered
subnetworks, with three common stations between subnet-
works. The a priori positions of the so-called IGS core stations
are assigned tight constraints, and each subnetwork is pro-
cessed with the GAMITsoftware [King and Bock, 2005]. The
estimated parameters include site positions, troposphere
delays and gradients, orbits and Earth orientation parameters
(EOP). The model terms applied include solid earth tide,
ocean tide, antenna phase center variation, and pole tide. The
elevation cutoff is set to 10 degrees, and there is no ambiguity
resolution. There is also an elevation-dependent weighting
applied in the process using postfit residuals. Once individual
subnetwork solutions are obtained, they are combined with
theGLOBK software [Herring, 2005]. Data from the regional
stations are analyzed in a similar manner, but with ambiguity
resolution and tightly constraining the IGS orbit and EOP
parameters at the GAMIT step. The parameter adjustments
and their respective covariance matrices for the global and
regional solutions are output as loosely constrained solutions.

The global and regional solutions are combined using the
GLOBK software on a daily basis, and aligned by a weighted
seven-parameter transformation to the ITRF2000 reference
frame [Altamimi et al., 2002]. More details of the data
processing are given by Nikolaidis [2002]. The set of indi-
vidually estimated daily positions then make up the ‘‘raw’’
position time series for the global and regional stations.
[6] The raw regional position time series contain both

signal and noise with temporal and spatial correlation. The
noise characteristics of CGPS time series have been inves-
tigated in the time domain [Zhang et al., 1997; Mao et al.,
1999; Williams et al., 2004] and in the space domain
[Wdowinski et al., 1997; Nikolaidis, 2002]. It is standard
practice to model the time series on a component-by-
component (north, east, vertical) basis with terms for
constant episodic offsets (due to coseismic deformation, or
instrumental change), linear trends (from tectonic motion
and long-period processes, such as postglacial rebound;
could have multiple rates), nonlinear variations (from post-
seismic deformation, magma intrusion; usually modeled by
simple analytical functions, such as exponential or logarith-
mic decay), and seasonal (annual and semiannual) terms
(from surface mass loading, such as atmosphere, ocean,
groundwater, and underground aquifer). The resulting po-
sition time series are called in this paper ‘‘residual’’ time
series. See Nikolaidis [2002] for more details on this
procedure. The residual time series contain various system-
atic (from network common to site-dependent) and random
errors, as well as unmodeled signals.
[7] The regional spatial filtering approach, referred to as

‘‘stacking’’ in this paper, calculates a common mode bias in
the detrended and demeaned residual position time series,
component by component. As presented by Nikolaidis
[2002], the weighted CME from a set of s representative
stations is computed for days i = 1, . . ., m by

e tið Þ ¼

XS
k¼1

nk tið Þ=s2i;k
� �

XS
k¼1

1=s2i;k
� � ð1Þ

where nk(ti) is the residual value of the kth station at epoch i
and si,k is its standard error. For each station component, the
filtered position x(t) is derived simply by subtracting the
common mode value from the observed component value
x0(t),

x tð Þ ¼ x0 tð Þ � e tð Þ ð2Þ

This approach works well for regional networks such as
SCIGN but has certain limitations when extended over
larger regions such as North American plate [Márquez-Azúa
andDemets, 2003], since the assumption of spatial uniformity
breaks down and the common mode bias becomes progres-
sively smaller.
[8] In this paper, we explore a more general spatiotem-

poral filtering approach, allowing nonuniform spatial re-
sponse of the network stations to a CME source, but still
assuming a uniform temporal function across the network.
For a regional network daily station coordinate time series
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with n stations and spanning m days, the (m � n) real-
valued matrix X(ti, xj) (i = 1, 2, . . ., m and j = 1, 2, . . ., n)
(without loss of generality, we assume m � n) is con-
structed. In X, each column contains the detrended and
demeaned coordinate values for a single geodetic compo-
nent (north, east, or vertical) from a single station in the
network, and the rows contain geodetic component values
for all stations at a given epoch. The element of covariance
matrix B used in our presentation is defined as

bij ¼
1

m� 1

Xm
k¼1

X tk ; xið ÞX tk ; xj
� �

ð3Þ

[9] The (n� n) symmetric matrix B can be decomposed as

B ¼ VLVT ð4Þ

where eigenvector matrix VT is a (n � n) matrix with
orthonormal rows, the L matrix has k nonzero diagonal
eigenvalues {lk} (n � k). In most cases with real geodetic
data, the rank of matrix B is usually full (k = n). From linear
algebra, any matrix of rank n can be expanded by an n
orthonormal vector basis. Thus we choose the orthonormal
function basis V to expand the data matrix X(ti, xj)

X ti; xj
� �

¼
Xn
k¼1

ak tið Þvk xj
� �

ð5Þ

where ak(t) is derived by

ak tið Þ ¼
Xn
j¼1

X ti; xj
� �

vk xj
� �

ð6Þ

Such decomposition is called empirical orthogonal function
(EOF) analysis [Menke, 1984], also known as principal
component analysis (PCA) [Preisendorfer, 1988]. The ak(t)
is called the kth principal component (PC) of matrix X, and
vk(x) is its corresponding eigenvector. The principal compo-
nents represent the temporal variations, and the eigenvectors
represent the corresponding spatial responses to the principal
components. If we arrange the eigenvectors so that the
eigenvalues are in descending order, the first few PCs
represent the biggest contributors to the variance of the
network residual time series, usually related to the common
source time function; The higher-order PCs are usually
related to local or individual site effects. Such a PCA
approach was successfully applied to the decomposition of
geodetic data for the study of interseismic deformation
[Savage, 1988, 1995; Scherneck et al., 2000; Parker, 2001]
and regional filtering [Johansson et al., 2002].
[10] When the covariance matrix B is normalized by the

variance vector s, the resultant matrix becomes the corre-
lation matrix C, i.e., cij = bij/(si sj), where s is defined as

sj ¼
ffiffiffiffiffi
bjj

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m� 1

Xm
k¼1

X tk ; xj
� �� 	2s

ð7Þ

[11] The correlation matrix can also be decomposed as

C ¼ WLcW
T ð8Þ

where the eigenvectors W are not the same as V in (4), and
the Lc matrix is also different from the L matrix in (4). The
data matrix X(ti, xj) can also use the orthonormal vector
basis W to perform the expansion, and the decomposition
formulas are similar to (5) and (6).

X ti; xj
� �

¼
Xn
k¼1

ak tið Þwk xj
� �

ð9Þ

ak tið Þ ¼
Xn
j¼1

X ti; xj
� �

wk xj
� �

ð10Þ

Such an expansion is called Karhunen-Loeve expansion
(KLE), which was originally used in pattern recognition
[Fukunaga, 1990] and later introduced to geophysical and
geodetic problems [Rundle et al., 2000; Tiampo et al.,
2004].
[12] The only difference between PCA and KLE is that

the former uses the covariance matrix B and the latter uses
the correlation matrix C to compute the orthonormal vector
basis. If we rescale the original time series by the square
roots of their variance reciprocals, the KLE analysis of the
original time series is equivalent to the PCA analysis of the
rescaled time series. Here the rescaled data matrix ~X is
defined as

~X tk ; xj
� �

¼
X tk ; xj
� �
sj

ð11Þ

where s is defined in (7). That is, the PCA decomposition
arranges the eigenvectors based on their contributions to the
network time series variance. Similarly, the KLE analysis
provides the eigenvectors based on their contributions to the
rescaled time series variances. It is easy to show that the
rescaled data matrix suppresses the time series with larger
variance, so that every rescaled time series has the same
normalized variance.

3. Regional Filtering of GPS Station Position
Residual Time Series

3.1. Residual Time Series and Preliminary Analysis

[13] We use a 5-year span (2000–2004) of daily coordi-
nate solutions from the SOPAC analysis of SCIGN data. We
set the criteria of sufficient data availability as 72%, which
restricts our analysis to those 152 stations that span more
than 3.6 years. For each epoch, we set 5% as the effective
epoch criterion. That means if at this epoch there are only
less than eight stations having solutions, this epoch will be
discarded. For the 5-year span SOPAC daily solutions, 4 days
are discarded. For each coordinate time series, we esti-
mate a constant offset, trend, and annual and semiannual
terms as described by Nikolaidis [2002]. Then we sub-
tract these terms from the coordinate time series to form
the residual time series. The coordinate jumps due to
antenna changes are also estimated and are removed from
the original time series. Our time series starts ten weeks
after the 16 October 1999 Mw 7.1 Hector Mine earth-
quake, and we model the effects of postseismic deforma-
tion [Pollitz et al., 2000, 2001; Fialko, 2004] using the
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exponential decay model from Nikolaidis [2002]. The
postseismic effects are also removed from the time series.
[14] The north, east and vertical residual station position

time series are analyzed independently to form three data
matrices. The daily coordinate solutions with formal
uncertainties larger than the chosen thresholds of 50,
50, and 100 mm for east, north, and vertical components,
respectively, are discarded. When the residuals exceed the
thresholds of 100, 100, and 300 mm for east, north, and
vertical components, respectively, they are considered as
outliers and are discarded. We fill time gaps shorter than
2 days with a three-point Lagrangian interpolation. For
larger gaps we first set the values at these missing days
using the spatially averaged values derived from all effective
sites on these days. Then we construct the covariance and
correlation matrices to perform PCA and KLE analysis,
embedded in the QOCA software [Dong et al., 1998; http://
gipsy.jpl.nasa.gov/qoca], to get principal components ak(t)
and eigenvectors vk(x) and wk(x). Taking only the first three
principal modes and using equations (5) and (9), we perform
PCA and KLE analysis iteratively until convergence to refill
in these missing points. Here we set the convergence criteria
as the average change less than 10�6 of the missing point
value from the previous iteration. For our data, the convergent
results are reached in less than 3 iterations.
[15] Next, we perform both PCA and KLE analysis

separately on the continuous (no gaps) residual coordinate
matrix. We construct the covariance and correlation matrices
B and C and decompose them to get eigenvalues and
eigenvectors following standard procedures (reducing B
and C to a symmetric tridiagonal matrix by Householder
transformation, deriving eigenvalues and eigenvectors from
the tridiagonal matrix using QL algorithm). We then compute
the principal components ak(t) by equation (6) (for PCA) and
equation (10) (for KLE). The principal component ak(t) and
eigenvector vk(x) andwk(x) together are considered as ‘‘mode
k’’, where ak(t) represents a temporal signature of the mode
and vk(x) and wk(x) represents the spatial footprint of the
mode. To make the comparison more instructive, we divide
each eigenvector by its maximum (absolute value) element,
so that the response of this ‘‘maximum’’ element is always
100% and all spatial response values are always in the range
(�100%, 100%). We call such an eigenvector a normalized
eigenvector. We multiply the corresponding principal com-
ponent by the normalization factor. Such a principal compo-
nent is referred to as a scaled PC.

3.2. Sensitivity Study

[16] To understand the consequences of the PCA and
KLE treatments on real data, we perform two simulation
tests. To mimic the real GPS time series, we simply take the
first four principal components of the KLE analysis of the
2000–2004 daily vertical coordinate time series of 149
SCIGN stations (stations MHMS, SACY and FXHS ex-
cluded) as the simulation mode series (Figure 1). The first
mode is chosen as CME and the other three modes as local
systematic effects. We assume the regional network consists
of four stations. Note that the empirical orthogonal func-
tions are related to the real residual time series of the 149
stations. For the four stations, the four principal components
are no longer totally uncorrelated. The time series at each
station are generated by summation of their spatial responses

to CME and other local systematic effects, as well as
random noises. Here the spatial response is defined as the
amplitude ratio of the CME at this station to the raw
simulation CME series. We want to test if the CME series
can be extracted and if the spatial responses at each
station can be recovered.
[17] In the first simulation, we assume the first mode in

Figure 1 as the CME series for four stations. Their spatial
responses are 100%, 70%, 80%, and 90%, respectively. The
time series of all the four stations also contain Gaussian
noise (zero mean, root of variance 2 mm), which are at the
same level as the CME. Both approaches recover the CME
series quite well. The recovered spatial responses of the four
stations are 100%, 71%, 81%, 92% for PCA approach, and
100%, 98%, 99%, 100% for KLE approach, respectively. In
this case (only CME and random noises exist), the PCA
approach retains correct spatial responses for the four
stations. However, the KLE approach obtains biased spatial
responses. The reason is that the KLE approach incorrectly
interprets the time series with stronger spatial responses as
‘‘noisy’’ series, and the rescaling reduces the responses of
these time series.
[18] In the second simulation, we still assign the first

mode as the CME series for all the four stations with 100%,
70%, 80%, and 90% spatial responses, respectively. Mean-
while, station 1 contains mode 2 time series (500% amplitude
of Figure 1), station 2 contains Gaussian noises with 2 mm
root of variance, station 3 contains mode 3 time series (100%

Figure 1. Simulation time series. (top) Mode 1 time series
(solid line) used as the CME for both simulations 1 and 2.
The black dots represent the recovered CME series in test 2
by KLE approach. (bottom) Local mode time series used in
simulation 2. The solid line is mode 2. The black triangle is
mode 3. The grey dot is mode 4.
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amplitude of Figure 1), and station 4 contains mode 4 time
series (50% amplitude of Figure 1). In this test the CME is no
longer the dominant component, and stations 1, 3, and 4 have
strong local systematic effects or random noise, in particular
for station 1.We do not expect that the simulated CME can be
completely recovered from the time series, because both PCA
and KLE decompositions only construct the empirical
orthogonal functions and the locally affected time series
(modes 2, 3, 4) are not totally uncorrelated with the CME
series. In PCA analysis, the mode 2 series at station 1
becomes the first principal mode. The CME series be-
come the second mode with the spatial responses of
�11%, 74%, 92% and 100% for stations 1, 2, 3, and
4, respectively. In the KLE analysis, the first principal
mode is CME with the spatial responses of 21%, 96%,
96% and 100% for stations 1, 2, 3, and 4, respectively. In
EOF decomposition, each successive principal mode is
the best fit of the data in X with contributions of
previous modes removed [Savage, 1995]. Thus the PCA
analysis always constructs the principal component, which
best deduces the time series variance, no matter whether
the component is due to common mode errors or local
effects, or a combination of the two. That is the reason
why PCA identifies the mode 2 time series as the first PC. On
the other hand, any local effects increase the time series
variance. The KLE approach rescales the time series to get
normalized variances, and hence reduces the influences of
local effects (also reduces the spatial responses of CME in
these time series). When there is a coherent signal in the
network time series with multiple stations involved, such a
rescaling property effectively suppresses the local effects and
makes the coherent signal much more significant.
[19] In the second simulation test the CME time series

can be recovered by both the KLE (as first PC) and PCA (as
second PC) approaches, but both have small low-frequency
deviations due to the interference from local mode effects.
We plot the KLE approach recovered CME time series in
Figure 1 for comparison. This demonstrates that the KLE
approach reduces the influences of local effects more
effectively than PCA and can recover the CME even in
the presence of strong local effects (however the resultant
spatial responses of CME are biased). On the other hand,
the PCA approach is preferred when the time series contain
CME, random noises and weak local effects. In our simu-
lation test, when the local effects (mode 2 series) at station 1
are reduced to 100% amplitude level, the PCA approach is
able to recover the CME and spatial responses of the four
stations satisfactorily. This test represents an extreme case
(strong local effects and only four stations). When the
network station number increases, the contribution of co-
herent common signal (or CME) to the variance becomes
more and more overwhelming, so that the threat from
uncorrelated local effects is greatly mitigated.
[20] The simulations tell us that the KLE approach has the

capability of extracting coherent signals even from noisy
time series with strong local effects, but the recovered
spatial responses are not always accurate. Hence the KLE
approach is most suitable for noisy data or for the applica-
tions, such as pattern recognition, which focus on detecting
hidden coherent signals, and where the recovery of the
spatial responses is not critical. The PCA approach, how-
ever, is able to recover both coherent signals and the correct

spatial responses but it is biased when the local effects are
dominant. Hence the PCA approach is most suitable for data
where the coherent signals are dominant and the local
effects have been effectively suppressed. Since the goals
of this paper are to identify and extract both the CME
temporal variations and spatial responses in the residual
time series, we utilize both the PCA and KLE approaches.
The KLE approach is used to identify the CME and other
coherent patterns and to prevent the PCA approach from
going astray when there are strong local effects. The PCA
approach is used to obtain the CME time series and spatial
responses in the final stage when the CME is identified and
the local effects are sufficiently suppressed.

3.3. Identify Stations With Strong Local Effects

[21] For the residual time series with 152 SCIGN stations,
both the PCA and KLE results obtain similar scaled PC time
functions and nearly uniformly distributed normalized spa-
tial eigenvectors for the first PC of the north component.
For the east component, the first PC time series from PCA
and KLE are similar. However, the first PC of PCA results
show three stations (MHMS, SACY, and FXHS) with
abnormally large responses. In particular, the response of
MHMS is about 80% larger than the responses of most
stations. The remaining stations have nearly uniform spatial
responses. On the other hand, the spatial responses of the
KLE results show nearly uniform distribution for all stations
because the responses at stations MHMS, SACY and FXHS
are suppressed. Since the normalization factor is the max-
imum response of the network stations, the east amplitudes
of the first scaled PC series from KLE results are about 60%
of that from PCA results. Meanwhile, the normalized spatial
responses at most stations of the PCA results are about 60%
of that of the KLE results. There are two possible mecha-
nisms to explain such a difference. One possibility is that
the abnormally large responses at the three stations are real,
and the KLE approach down weighs the three time series
and makes their apparent spatial responses similar to that of
other stations. If such an explanation is true, we must accept
a special nonuniform spatial response distribution: nearly
uniform distribution at most stations and abnormally large
responses at the three stations. Another possibility is that
strong local effects at the three stations contaminate their
first east PC responses. High-order east PCs of the PCA
results reveal that strong local effects exist at the three
stations. The east residual time series of the three stations
also show abnormal variations with several big data gaps.
Furthermore, all the three stations are located in the north-
western rim of the Santa Ana basin, where the aquifer
activities are strongest [Bawden et al., 2001; Watson et
al., 2002; Argus et al., 2005]. We do not attempt to model
the local effects at the three stations and just simply discard
them from our station list.
[22] After removing the three stations, the PCA and KLE

analyses show much more consistent results for the remain-
ing 149 stations. It is interesting that that the KLE results are
nearly the same with or without the three discarded stations.
Figures 2, 3, and 4 show the PCA results of the spatial and
temporal patterns of the first two principal modes for north,
east, and vertical residual coordinate time series, respectively.
The KLE results are very similar to the final PCA results (see
next section), and sowe do not display them in this paper. The
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Figure 2. East component of PCA solution. (left) (top) First scaled PC (solid line) and (bottom) its
normalized spatial eigenvectors. The grey dot series (offset by �0.012 m) in Figure 2 (top) represent the
east displacement time series at USC1 caused by atmospheric mass loading. The arrows represent the
element values of the normalized eigenvectors (not the displacement directions). The up arrows represent
positive responses to the scaled PC; the down arrows represent negative responses to the scaled PC.
Station name CUHS is printed next to its arrow. (right) (top) Second scaled PC and (bottom) its
normalized spatial eigenvectors. The arrows are defined as in Figure 2 (left).

Figure 3. North component of PCA solution. The arrows are defined as in Figure 2. (left) (top) First
scaled PC (solid line) and (bottom) its normalized spatial eigenvectors. The grey dot series (offset by
�0.008 m) in Figure 3 (top) represent the east displacement time series at USC1 caused by atmospheric
mass loading. (right) (top) Second scaled PC and (bottom) its normalized spatial eigenvectors.
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scaled first PC time series as well as the normalized spatial
eigenvectors (all east, north and vertical components) of the
PCA and KLE results are similar except the vertical PCA
spatial response at station CUHS is about 10% larger than the
responses of all other stations (Figure 4, left). To check if the
slightly abnormal vertical response at station CUHS is real or
from local effects, we examine the patterns of the second- and
high-order PC.
[23] The temporal variations in the second PC are domi-

nated by the long-period (>1.2 years) components (Figures 2,
3, and 4, right). Their spatial distribution indicates that less
than 20% of the stations have significant responses, and not
all are of the same sign. Here we define ‘‘significant’’ as the
(absolute value) normalized response eithermore than 25%or
more than twice the (absolute value) average normalized
response. The average normalized responses (absolute val-
ues) of the 149 stations are 10%, 10%, and 6% for east, north,
and vertical components, respectively. The stations with
significant responses in the east and north series are located
in the northwestern rim of the SantaAna basin and theMojave
Desert near the epicentral regions of the Landers and Hector
Mine earthquakes. These may be related to aquifer water
volume variations and unmodeled postseismic deformation.
Moderate responses in the vertical series are seen for stations
in the Salton Trough and northwestern rim of the Santa Ana
basin. Both areas have strong aquifer activities. This mode
also looks like an east-west tilt motion (see Figure 4, right).
Across longitude 243�, the stations on the east and west sides
move in opposite vertical directions. In the western Trans-
verse Ranges area, there is one isolated station (CUHS) with
significant responses to all east, north and vertical second
PCs.Weareunable to identifypotential geophysical processes
at the station. An examination of the third mode’s spatial

eigenvectors indicates that only a small portion of the
stations have modest amplitudes with some significance.
Their temporal variations exhibit from high-frequency
irregular fluctuations to interannual variations. These
high-order PCs are probably the mixture of unmodeled
signals, local effects and noise. The second PCs of the
KLE results confirm that station CUHS has significant
spatial responses for all east, north and vertical compo-
nents. Comparing both first and second PCs, we postulate
that the station CUHS has strong local effects from
unknown local sources. Therefore we also remove the
station CUHS from the next step of our analysis, leaving
a total of 148 stations.

3.4. Pattern Analysis of the PCA and KLE Results

[24] Using the residual time series of the 148 stations, we
repeat the PCA and KLE analysis. The eigenvalues (+ in
(4) or +c in (8)) of the east, north, and vertical covariance or
correlation matrices represent the share of each PC mode in
the total covariance or correlation, and their cumulated
shares are displayed in Figure 5. The first PC eigenvalues
from KLE analysis show higher percentages than that from
PCA analysis, indicating that KLE approach enhances the
coherent common modes, while suppressing the local
effects effectively. It is clear that the residual time series
do have significant correlated modes. The first modes
represent 89%, 76%, and 78% (PCA analysis) and 90%,
81%, and 80% (KLE analysis) of the total eigenvalues for
the east, north, and vertical components, respectively.
[25] The first mode PCs (temporal functions and spatial

eigenvectors) of the east, north, and vertical components of
the PCA analysis for the 148 stations are displayed in
Figure 6, 7, and 8. Since the stations with strong local

Figure 4. Vertical component of PCA solution. The arrows are defined as in Figure 2. (left) (top) First
scaled PC (solid line) and (bottom) its normalized spatial eigenvectors. The grey dot series (offset by
�0.020 m) in Figure 4 (top) represent the east displacement time series at USC1 caused by atmospheric
mass loading. (right) (top) Second scaled PC and (bottom) its normalized spatial eigenvectors.
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effects have been identified and excluded, the KLE results
are very similar to the PCA results. The first PC spatial
eigenvectors of all 148 GPS stations have the same sign,
with average normalized amplitudes (absolute values) of
86%, 87%, and 86% from PCA analysis and 96%, 92%, and
93% from KLE analysis for east, north, and vertical
components, respectively. The minimum normalized ampli-
tudes are 69%, 76%, and 71% from PCA analysis and 50%,
47%, and 51% from KLE analysis for east, north, and
vertical components, respectively. The temporal variations
of the east, north, and vertical coordinates over the 5-year
time span are not purely random, they display some
systematic structure. Spectral analysis shows that for both
PCA and KLE results there are significant features with
3–4 months period in all three components, and signif-
icant approximately 14-day periods in the vertical com-
ponent. Figure 9 shows the spectrum results of the PCA
analysis. The 14-day period spectrum might be related to
the ocean tide model (Mf tide, semimonthly lunar tide with
period of 13.7 days) used in the analysis. The GAMIT
software performs ocean tide corrections using Scherneck’s
model [Scherneck, 1991], which includes the Mf tide correc-
tion. One possibility is that the model is still not good enough
for the Mf tide, in particular near the southern California
coastal area. Another possibility is model error in the diurnal
O1 tide and semidiurnal M2 tide, whose alias periods are also
around 14 days [Penna and Stewart, 2003]. Though the most
likely origin of this signal may stem from imperfect tidal
correction, other potential sources cannot be ruled out. We
leave the problem for future investigation.
[26] Since the trends and seasonal terms have been

subtracted in the residual time series, there is no apparent

tectonic process common to all of southern California
stations that could explain the first PC. The potential
geophysical candidates for the first PC series aremass loading
from atmosphere, oceans and groundwater [Mangiarotti et
al., 2001; vanDam et al., 2001; Dong et al., 2002]. Aquifer
water volume variations can cause significant site motion
[Bawden et al., 2001;Watson et al., 2002; Argus et al., 2005]
but only on a more local scale. In order to verify if the
atmospheric mass loading plays any role, we performed a
spot check on the first PC series of one typical station, USC1.
Since the dominant spatial wavelength of the deformation
caused by atmospheric mass loading is expected at the 103 km
level, we calculated the atmospheric loading caused displace-
ments at station USC1 as a representative of the network as a
whole. The normalized eigenvectors for USC1 are 84%, 91%
and 84% in PCA analysis and 99%, 97%, and 91% in KLE
analysis for the east, north, and vertical components, respec-
tively, and so are representative of the average spatial
responses of the network stations. The 6-hour sampling
National Center for Environmental Prediction (NCEP) re-
analysis surface pressure data from 2000 to 2004 are used to
calculate the daily displacements at USC1. The inverted
barometer (IB) model is implemented for the oceanic
response to surface pressure variations. The Green’s
function approach [Farrell, 1972; vanDam and Wahr,
1987] is adopted in the calculation. To be consistent with
the residual time series, we remove a bias, trend, and
annual and semiannual terms from the calculated dis-
placement time series due to atmospheric mass loading to
obtain the residual time series. The residual displacement
time series atUSC1 are also plotted in Figures 6, 7, and8 (top).
As can be seen in Figures 6, 7, and 8, the amplitudes of
the atmospheric loading caused motions are too small and
the correlations with the PC time series are too poor to
be the source of the first PC. Thus the dominant motions
of the first PC series are likely nonphysical and related to
mismodeled satellite orbits and EOP, and reference frame
limitations [Wdowinski et al., 1997].

4. Regional Filtering Using PCA and KLE
Approach

4.1. Comparisons With the Stacking Approach

[27] Here we first examine the nature of the filtered time
series derived by the stacking approach. Equation (1)
indicates that the common mode bias is a spatially weighted
average and therefore it is network-dependent. Equation (2)
assumes that the CME has spatially uniform distribution and
therefore it is not network-dependent. When the CME is
computed independently for each day, the existence of daily
CME is implied. In this sense, the stacking procedure can be
considered as a spatiotemporal filter. The assumption of
spatial uniform distribution of CME over the network limits
the application of the stacking approach. As the size of the
regional network increases, we expect that the calculated
magnitude of the daily CME will be reduced. In the extreme
case of a global network, the concept of CME loses its
meaning, as the common mode bias is equivalent to a global
translation. The successful application of stacking approach
to regional networks such as SCIGN indicates that the
regional network size is smaller than the common mode
wavelength. After gaining better knowledge of the charac-

Figure 5. Cumulative percentage of PC eigenvalues. For
visual clarity, we only plot the eigenvalues of the first 30 PCs.
(top) PCA result. (bottom) KLE result.
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teristics of the CME, especially the wavelengths of various
systematic errors, it is desirable to redefine the CME as a
function of the wavelength.
[28] Our spatiotemporal filtering approach (PCA and

KLE) retains the assumption that the CME is both spatially
and temporally correlated for all regional network stations,
but implements the CME filtering in a more general way. In
the space domain, our spatiotemporal filtering approach
removes the uniform distribution constraint and allows the
network data themselves to reveal the spatial distribution of
the CME. In the time domain, the stacking approach assumes
the network residual time series contain only CME and
random errors. The PCA and KLE approaches assume that
the network residual time series contain CME and various
local effects and random noises, whose spatiotemporal pat-
terns are orthogonal to the spatiotemporal patterns of CME. It
is apparent that the spatiotemporal patterns of random noise
are orthogonal to uniformly distributed CME, so that the
stacking approach is just a special case of the general
spatiotemporal filtering approach. The actual network resid-
ual time series contain manymodes from network common to
local common and site-dependent. The stacking approach
simply performs a spatially weighted average on a daily basis
and essentially separates the network data into two modes:
uniformly distributed and randomly distributed. Thus the
effects of other local modes will partly leak into the uniformly
distributed mode and partly enter the randomly distributed

mode. The EOF analysis takes the entire network time
series into account and decomposes the time series into
various spatial and temporal coherent orthogonal modes.
Although these local effects in general are not completely
orthogonal to CME, they are close to orthogonal if the
network common mode signals are removed in advance
and the individual local effects are not strongly correlated.
Thus the EOF decomposition is able to provide better
separation than the stacking approach. Furthermore, the
spatial distribution of the CME in the real data is not
available with the stacking approach, as it already
assumes uniform distribution in advance. On the other
hand, the PCA and KLE approaches are able to display
the spatiotemporal distribution of each principal mode for
more detailed investigation.
[29] Next, we discuss the weighting of the PCA, KLE and

the stacking approaches. Equation (6) indicates that the
PCA derived CME can also be considered as a ‘‘weighted’’
mean using the same spatial eigenvector v(xk) as a weight-
ing function for all days, while the stacking approach uses
different 1/s2i,k as the weighting function from day to day.
The si,k is a daily standard error at epoch i and station k,
which reflects the solution formal uncertainty, usually is
related to random observation errors but not necessarily
related to CME. For example the station with strong local
effects or weak CME response still can have small standard
error (hence large weighting). When the real data indeed

Figure 6. First east PC component of PCA solution. The arrows are defined as in Figure 2. (top) Scaled
PC (solid line) and (bottom) its normalized spatial eigenvectors.
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have only spatially uniform distributed CME and random
errors, this weighting function of the stacking approach is
meaningful. When the real CME distribution violates the
uniform assumption or there are significant local effects in
the data, the weighting function of the stacking approach is
not optimal. The v(xk) in equation (6) reflects the spatial
correlation among the network stations derived from the
time series of the entire network, which is related to a
network coherent pattern such as CME, assuming that any
strong local effects have been suppressed effectively. How-
ever, our current PCA weighting formulation ignores the
formal uncertainties, so that it is vulnerable to the perturba-
tions from weak or noisy data. Thus the PCA approach is
most suitable for relatively homogeneous data sets with
weak or noisy data excluded in advance. The weight
function we use for the KLE approach is a combination
of PCA weighting and time series variance, so that it resists
noise and local effects better but could also suppress the
pattern at stations with strong responses. How to define an
optimal weighting function to perform spatiotemporal fil-
tering is still an open question for future investigation.
[30] We further illustrate the possible different outcomes

from three typically encountered cases. 1. A station has very
weak CME, so that its temporal variations differ significantly
from that of other network stations. 2. A station has
normal CME, but it also has local effects partially
correlated with CME. 3. A station has normal CME,

but deviates for a short (few days) period of time
(perhaps due to some transient deformation or local
error). In the first case, the poor correlation between this
station and the rest of the network is embodied in the
covariance matrix B with small off-diagonal terms (abso-
lute values) related to this station. The CME related
eigenvector (derived from (4)) has a very small response
element related to this station. Therefore this station
basically does not contaminate the common mode PC
(calculated by (6)). Also, a small CME correction is
imposed on this station due to a small response in the
eigenvectors. In the second case, PCA constructs the
orthogonal eigenvectors to minimize the variance. Be-
cause of the correlation between CME and the local
effects at the station, the station’s corresponding element
in the CME eigenvector is enlarged. The impact on the
common mode PC is small because most stations do not
have the similar correlated local effects (otherwise this
local effect is no longer ‘‘local’’, it should be another
CME). The CME corrections on all other network sta-
tions are basically unbiased except this station, which is
overcorrected. In the third case, since the covariance
matrix is constructed using the entire time series, this
few day aberration will not significantly affect the overall
correlation in PCA analysis. In all three cases, the CME
derived by stacking will be biased if this station is
included in the list of representative stations. That is,

Figure 7. First north PC component of PCA solution. The arrows are defined as in Figure 2. (top)
Scaled PC (solid line) and (bottom) its normalized spatial eigenvectors.
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the choice of the representative stations is subjective. In
the first case, this poorly correlated station gets an
erroneous CME correction, so that its filtered time series
is degraded (larger RMS) compared with its unfiltered
time series. These simple (yet common) examples indicate
that our spatiotemporal filtering approach is not sensitive
to a single poorly correlated (in space or time) station. It
avoids a potential bias due to overly relying on a set of
selected stations for the common mode calculation.

4.2. Define the CME From PCA Analysis

[31] Although the CME and regional spatial filtering are
two widely used terms, the definition of ‘‘common mode
error’’ has not been rigorously and quantitatively defined.
Another question raised by our proposed approach is: how
to identify which mode is the common mode? We notice
that there is no absolute boundary between the network
common mode and subnetwork common modes, and there
is no generally accepted consensus. In this paper, we
tentatively treat the mode as the common mode if most
sites (more than 50%) have significant normalized responses
(larger than 25%), and the eigenvalues of this mode exceed
1% of the summation of all eigenvalues. According to this
criterion, only the top few PC modes are potential candidates
for the common mode, because the high-order modes are
usually related to a few stations and presumably reflect local

effects. In general, the common mode PC contains both
errors and unmodeled common signals. The PC can be
expressed as

ak tið Þ ¼ ask tið Þ þ aek tið Þ ð12Þ

where ak
s (ti) and ak

e (ti) denote unmodeled common signals
and common errors, respectively. If the signals and errors
are separable, only the common errors represent CME. The
CME from PCA is defined by

ej tið Þ ¼
Xp
k¼1

aek tið Þvk xj
� �

ð13Þ

where p is the identified common mode PC number. For
KLE analysis, the CME is derived using the same
equation (13) where the vk(x) is replaced by wk(x).
[32] For our SCIGN residual time series, based on the

discussion of the previous section, only the first modes (p = 1)
of the east, north, and vertical components satisfy our
criteria. In this paper, we simply treat the first PC mode
as CME, although this mode still contains unmodeled
signals such as caused by nonseasonal atmospheric mass
loading, which is much smaller than the PC (see Figures 6,
7, and 8). We cannot identify any geophysical process,

Figure 8. First vertical PC component of PCA solution. The arrows are defined as in Figure 2. (top)
Scaled PC (solid line) and (bottom) its normalized spatial eigenvectors.
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which would make a significant contribution to the first
PC mode.

4.3. Comparisons

[33] Figure 10 shows a comparison of the CME time
series (years 2000–2004) derived by the stacking and PCA
approaches. To be consistent with the stacking results, the
PCA derived CME time series are scaled by the spatially
averaged response instead of the maximum response. The
stacking results are derived from the SOPAC operational
analysis. The selected stations for stacking are not the same
for each day, and are based on the solution quality for each
day. In the 2000–2004 period, the maximum selected
stations are 60 and the minimum selected stations are 17.
Figure 10 indicates very good agreement for all east, north
and vertical components, which confirms that the SCIGN
daily solution time series contain the CME, and the time
series of the common mode biases derived by the stacking is
a good representation of the CME. There is one day
(2002.6671) when the stacking CME time series of the
north components have significant larger correction than the

PCA CME value. The reason is that some of the chosen
representative stations had abnormal local effects on this
day. This anomaly is not present in the PC time series, since
the PCA approach is less sensitive to a single abnormal
station.
[34] It is interesting to compare the scatters of the filtered

time series between PCA and stacking approaches. The
weighting function (spatial eigenvector) of the PCA is
derived from the entire network time series, and the same
spatial weighting function is used for each day, while the
weighting function of the stacking approach comes from the
standard error of each daily solution. Thus the comparisons
of overall mean scatters and daily scatter time series
between the two approaches will give us some clues about
the nature of the CME, for example, whether the CME is
the dominant error in the residual network time series?
Are the spatial responses of the CME close to uniform?
Which weighting function reduces the scatters more
effectively?
[35] The filtered daily mean scatter time series of the

two approaches are displayed in Figure 11. The daily

Figure 9. Power spectrum of the first PC time series from PCA analysis. For visual clarity, we only plot
the spectrum to cpy (cycles per year) = 80. (top) East component. (middle) North component. (bottom)
Vertical component.
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scatters in Figure 11 are calculated using the sum of
absolute residual values divided by station number (L1
norm scatters) to mitigate the influences from abnormal
residuals, which are usually related to local anomalies.
Since the daily spatial mean CME time series from PCA
analysis are very close to the stacking results (Figure 10),
the slightly smaller scatters of the PCA results (Figure 11)
indicate that the slightly nonuniform spatial responses
(eigenvector) from the PCA analysis fit the data better.
There are few days when both stacking and PCA approaches
have large scatters, implying some abnormal local effects on
these days. For example, on day 2002.6671 there are only
22 regional stations including several poorly correlated
stations in the northwestern rim of the Santa Ana basin.
The weak regional solutions on that day are dominated
by other local effects, which are not consistent with the
CME from the entire time series. Table 1 lists the overall
mean L1 and L2 norm scatters calculated of the 5-year
scatter time series for east, north and vertical components
from the stacking, PCA and KLE approaches. Where the

daily L1 norm scatter is defined by the sum of absolute
residual values divided by station number, the daily L2
norm scatter is the square root of the sum of residual
squares divided by station number. The Table 1 indicates
that all the three approaches are able to reduce the
scatters significantly for the SCIGN daily solutions. Our
regional filtering (PCA results) reduces the scatter power
(calculated using L2 norm scatters) of the unfiltered
residual time series by 87.6%, 73.1% and 75.5% for east,
north and vertical components, respectively. The stacking
approach reduces the scatter power by 87.0%, 72.8%, and
74.9% for east, north, and vertical components, respectively.
[36] It should be mentioned that regional filtering not

only improves the resolution of the observing system for
detecting weak and transient signals, but also uncovers
other contributors to the CGPS error budget. For exam-
ple, the vertical daily scatters of the filtered time series
(Figure 11) clearly demonstrate that the network residual
scatters are larger during the summer than that during the
winter. This is likely related to error sources that are

Figure 10. Comparison of the common mode time function. The solid line is the stacking solution and
the triangle is the PCA solution. (top) East component. (middle) North component. (bottom) Vertical
component.
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temperature-dependent, such as small-scale atmospheric
perturbations, antenna thermal noise, and thermoelastic
strain [Prawirodirdjo et al., 2006].

5. Conclusions

[37] The proper characterization and suppression of GPS
errors is critical in maximizing the accuracy achievable
from regional networks. Using the combination of PCA
and KLE (PCA/KLE), we have reestablished that spatio-
temporal correlated errors are the dominant error source in
daily GPS positions by examining the time series of 148
SCIGN stations over a 5-year period. We have demonstrated
that PCA/KLE provides a more general approach to spatial
filtering by being able to identify the principal components
in the spatial distribution of the CME. Our analysis shows
that the temporal behavior of the CME is not purely
random. The spatial characteristics of the CME are close
to uniform for all east, north and vertical components,
which implies a very long wavelength for the CME,
compared to the spatial extent of SCIGN, and also explains

the good agreement of PCA/KLE with the traditional
stacking approach [Wdowinski et al., 1997]. PCA/KLE
can also be used to investigate spatiotemporally correlated
geophysical signals in the position time series, such as mass
loading caused by seasonal deformation [Tiampo et al.,
2004], but is beyond the scope of this paper.
[38] Although the assumption of spatial uniform distribu-

tion of CME is successful for SCIGN and several other
similar size regional networks, it is unclear what the spatial

Figure 11. Comparison of the daily scatters of the regionally filtered time series by the stacking
approach (solid line) and the PCA approach (dots). The scatters are calculated using L1 norm (see text for
details). (top) East component. (middle) North component. (bottom) Vertical component.

Table 1. Scatter Comparisona

Component Unfiltered Stacking PCA KLE

East (L1) 2.46 0.83 0.80 0.82
North (L1) 1.65 0.75 0.74 0.75
Vertical (L1) 5.02 2.40 2.37 2.38
East (L2) 3.30 1.19 1.16 1.18
North (L2) 2.12 1.11 1.10 1.12
Vertical (L2) 6.44 3.23 3.19 3.21

aL1 norm scatters (in mm) and L2 norm scatters for the residual
coordinate time series from 2000 to 2004 at 148 CGPS stations in southern
California. The L1 and L2 norm scatters are defined in the text.
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limit of this assumption is. To extend regional filtering to
larger networks, it is critical to understand the nature and the
wavelength of the CME. In particular, different software
and different analysis strategies could lead to different
systematic errors, generating different spatiotemporal CME
patterns and wavelengths. Using a continental-scale GPS
network (North America and Mexico) data, Márquez-Azúa
and Demets [2003] found that the spatial cross correlations of
the residual time series are high within 1000 km distance,
then gradually decrease to zero at about 6000 km
distance. Existing larger-scale CGPS networks such as
the Japanese GEONET [Miyazaki et al., 1997] and new
networks, in particular the in-construction CGPS network
of EarthScope’s Plate Boundary Observatory (PBO) will
allow us to more fully understand the source of regional
CME. The spatiotemporal patterns exhibited in our anal-
ysis suggest that these CME are likely caused by unmod-
eled or mismodeled motions of satellite orbits, reference
frame or EOP [Wdowinski et al., 1997]. Large-scale
atmosphere effects, receiver and satellite antenna phase
center mismodeling are also potential candidates for the
CME.
[39] Other outstanding questions are the nature of the

seasonal components remaining in the filtered CGPS posi-
tion time series, and their classification as signal or noise.
When constructing the residual coordinate time series, we
implicitly assume that all secular and seasonal components
are signals. However, previous studies [e.g., Dong et al.,
2002; Kedar et al., 2003] have shown that some of the
seasonal effects are due to systematic errors in the daily
GPS solution time series.
[40] Finally, implicit to the analysis presented here is that

CME analysis can be applied to any size network, regard-
less of it size. The idea to perform subnetwork CME
analysis based on the characteristics of the PC error analysis
of the entire network should be further explored. How to
define and quantify the CME is still an open question.
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